<dl id="pxn0p"></dl>

    1. <output id="pxn0p"></output>
      <output id="pxn0p"></output>

      <output id="pxn0p"></output>

      <output id="pxn0p"></output>

      <output id="pxn0p"><bdo id="pxn0p"><video id="pxn0p"></video></bdo></output>

      <output id="pxn0p"><font id="pxn0p"><td id="pxn0p"></td></font></output>

        <dl id="pxn0p"><ins id="pxn0p"><nobr id="pxn0p"></nobr></ins></dl>
        數據化互聯網營銷和運營
        綜合知識平臺

        網絡營銷效果衡量的核心指標及我們用什么樣的邏輯思考(3)

        【前言】

        這篇文章的誕生簡直是命運多舛。

        一般而言,博客中的文章現在總是在上下班的時候在地鐵中慢慢完成的。這個第三篇,經過了好十幾次地鐵來回(現在坐地鐵上下班已經沒有那么多,所以這十幾次地鐵,更是花了一月有余的時間),已經快要完成的時候,被我不慎重裝系統后完全刪除了。

        各位看官,若是你們也有類似遭遇,那你們便會懂得這是一種什么樣的挫折感。但,一個系列從誕生到最終的結束必須是一篇一篇慢慢道來的,所以,既然已經有了開篇的一、二兩個文章,那就必須讓它繼續下去,不能成為爛尾的系列。

        所以,我重新振作精神,忽然發現如果我重新寫來,也許能夠比丟失的第一遍寫得更好,于是便欣然重頭來過。

        【正文】

          前一篇文章我們講了什么是engagement,engagement包含哪些指標,如何定義這些指標,以及如何通過技術方式監測到這些指標。這一篇文章我們則要考慮一些更深層次的問題。一部分問題是,我知道衡量engagement十分具有價值,但是這種衡量應該用到哪些業務領域呢?即engagement的適用性問題。另外一些問題則是前一個問題的延伸,即在適用engagement的領域,又應該采用何種具體的方法呢?即engagement的方法邏輯。很多朋友向我咨詢這樣的問題,幾乎每一個engagement的具體指標都被詢問過,這種面對業務不知用何種指標去剖析,或者面對指標不知應該如何應用的茫然失措我感同身受,而我所做的工作其實一直就是試圖把它們聯系起來,這使我覺得在核心指標的這一系列文章中,同大家一起解決這個問題的意義重大。

        Engagement的應用能夠解決什么問題?

        由于Engagement的靈活性,它至少在三個領域具有極高的研究價值。其一,它對于衡量總體(宏觀)效果的達成有幫助;其二,在確知流量質量的情況下,它衡量網站對影響用戶的程度(即一般我們所稱的網站的質量);其三,在確知網站質量的情況下,它衡量網站流量的質量。

          這三個問題,幾乎是我們進行營銷分析的核心領域了。我們先來看第一個問題:如何通過Engagement指標衡量總體(宏觀)效果的達成。?

        Engagement衡量總體(宏觀)效果的三種方法

        Engagement衡量宏觀效果的方法,基于這樣的一種假設:大量用戶看似混沌的各種行為,實際上均反映了網站對用戶的影響(吸引)程度。用戶行為的量和度越大,表明網站對用戶的影響越強烈。這么說不難理解,同樣的兩個新聞站,A站平均每個用戶訪問看10條新聞,B站只有5條新聞,很明顯A站對用戶的吸引程度更大。Engagement本質上即是用于描述各種用戶混沌行為,因此engagement的數量和強度,與網站影響用戶的能力是等同的。

          那么如何衡量Engagement的數量和強度呢?

        通常有三種簡單的方法衡量宏觀Engagement。第一種方法,是觀察全局性的Engagement指標,這些指標既可以是標準指標,也可以是自定義指標。第二種方法,是把單個的Engagement指標按照自定的重要性程度加權匯總起來,形成Engagement Index加以衡量。第三種方法,則是按照用戶行為與營銷目標之間的數學關系定義各個指標的重要程度,然后再加權匯總成Engagement Index。只要對用戶行為的監測得當(關于Engagement具體指標的監測,請參看本系列的第二篇文章:網絡營銷效果衡量的核心指標及我們用什么樣的邏輯思考(2)),三種方法操作起來都不會有什么困難。

        方法一:全局性Engagement指標的分析

        第一種方法,觀察全局性的Engagement指標,最常見的便是觀察Bounce Rate,PV/V,或者Time on Site。關于Bounce Rate,大家心懷的問題最多。幾乎在所有的課堂上,當我講解Bounce Rate相關的知識的時候,就會有同學提問——Bounce Rate到底多高算好?我可以簡單的答復,如果你的Bounce Rate沒有超過65%,那么還真是值得慶賀。但這樣的答案并不是我喜歡的(所有一刀切的做法都值得懷疑,比如說在幾十年前自上而下決定的那些絕對的善或是絕對的惡),如果京東的bounce rate是65%,那么他們一定會頓足捶胸的痛苦。不過,若是在營銷活動中,網站的Bounce Rate真的高于80%,那我們該得出什么樣的結論呢?

        結論A:該死,這真是一次全然失敗的活動,流量糟透了,網站也稀爛。

        結論B:網站是成功的,但是流量存在極大的問題。

        結論C:流量肯定沒問題,但網站很糟糕。

        這三個結論,哪一個會是正確的?答案是,都有可能。不過,在具體的情況下一定只有一個可能性。我們如何判斷Bounce Rate高,到底說明了哪種情況?

        我的方法很簡單——按照流量來源細分Bounce Rate,然后判斷到底是流量除了問題,還是網站出了問題。解決這個問題我將引入參照系的概念,即流量中可以作為參照系的標準流量來源。我們都知道,網站流量來源多種多樣,其中質量最好的流量是自然搜索流量(organic)。或許你會失望,問為什么不是direct(直接流量),原因是direct并非真正的直接流量,而是對于這個網站分析工具而言所有無法判斷來歷的流量,因此direct可能雜糅了很多流量(預知詳細,請看這篇文章:Direct Traffic真的是直接流量嗎?如何辨識真正流量來源?),這些流量的質量幾乎可以肯定不如自然搜索流量。你會問,為什么organic是質量最好的,其實很簡單,organic流量不是作弊流量,而且反映了真正的用戶訪問需要。如果一個網站沒有什么organic流量,那么流量質量第二好的流量是付費搜索引擎流量。這兩種流量可以作為我們衡量bounce rate的參照系。現在,我們來觀看下面的幾種情況,你又會分別得出什么結論:

        情況A:Organic流量的bounce rate不錯,只有40%左右,但網站整體的bounce rate是80%。

        情況B:Organic流量的bounce rate和網站整體的bounce rate幾乎一樣高,都高達80%。

          相信你看到這兩種情況,心中已經有數了。A情況,說明網站對那些真實有興趣的用戶的吸引力還是不錯的,40%的bounce rate水準不錯,但網站仍然有高達80%的bounce rate,說明其他流量很可能并非你希望獲取的人群。B情況,如果連Organic流量都有極不理想的bounce rate,那么說明這個網站真心做的差點意思。流量參照系給了我們一個很明確判斷到底是流量還是網站出問題的方法,但使用這個方法有一個前提,就是Organic的流量不能太少,如果Organic流量很少,可做替換的流量是Paid Search。但如果沒有什么Search的流量,那就找那些你認為質量可靠的流量來源。不過,無論參照系流量的表現如何,一次營銷活動,如果整體的Bounce Rate高于80%,就肯定不是一個特別理想的狀況,要么是流量或者網站存在問題,要么是存在營銷費用的浪費。

          PV/V和Time On Site相對bounce rate而言,更難有benchmark。不過,就我看來,幾乎可以確定一個網站的PV/V和Time On Site越高,說明營銷受眾受到網站影響的程度越深。過去我曾經認為有一些網站PV/V或者Time On Site太大是不好的——比如政府的服務類網站,太高的PV/V或者Time On Site說明了人們或許沒有找到該找的內容。但追蹤了太多的網站,我發現國人的耐心其實非常有限,若是一個網站不容易找到他們需要的內容,即使是重要的網站,他們也會轉而求助于百度,而不會在這個體驗糟糕的網站中瘋狂追尋。平均PV/V大于3,或者平均Time On Site大于2分鐘,才能說明網站本身對用戶有起碼的吸引力。

          觀察全局性的,自定義的Engagement指標在這里則更加常用,例如,在一次促銷活動中把用戶點擊促銷商品的點擊數量(或者打開促銷商品詳情頁面的次數)作為一個全局性的Engagement來看待,并將最終達成的實際數量與預先設定的目標進行比較,從而觀察營銷的效果是否達成。這樣的方法很快捷,但也很粗放。如果Bounce Rate高于90%,但很幸運的,促銷商品的點擊數量卻超過了預先設定目標的兩倍,那么這次營銷活動到底是好還是不好呢?單個看待每一個指標,總會碰到一些讓人難受的取舍問題,而且總是難以真正照顧全面。這時我們就必須要考慮其他的新方法。

        方法二:單個Engagement指標的加權匯總

        第二種方法——把單個的Engagement指標按照自定的重要性程度加權匯總起來,彌補了第一種方法的部分不足,畢竟,宏觀的Engagement是由具體的一個一個的Engagement的指標綜合而成的結果。這個方法有三個步驟,首先,列出所有的Engagement的具體指標,然后根據你“心目中”的每個指標的重要程度,給各個指標指定一個權重,最后把每個指標乘以權重,加總起來。加總起來的值,即Engagement Index。這種方法在我很早的一篇文章中有專門的論述,請見:網站分析的最基本度量(8)——Engagement。除了這篇文章的頁面分區方法,你也可以按照行為的類型對指標權重進行計算,例如,注冊成功頁面一個PV是10個權重,購物車添加成功頁面為20個權重等。

        不同類型的營銷選用的具體指標和權重的安排肯定不一樣。下面的兩個例子,分別對應效果營銷和品牌營銷:

          第二種方法比第一種方法全面,但是權重的分配很主觀,而且一些常用的全局指標,比如Bounce Rate,PV/V,或者Time on Site,反而不能囊括進入,不得不成為兩套并列的衡量。后者不是大問題,但是自作主張的權重分配卻似乎很容易被老板和客戶challenge。不過,事實上,這種方法是目前最多被采用的方法,因為它相對簡單,而且對于一個廣告主而言,固定一些常見行為的權重值有很多好處,它很明確地指明了營銷活動應該努力的方向,而且也助于campaign不同階段或者相似的campaign之間的橫向比較。

        ?方法三:轉化關系核定下的Engagement指標的加權匯總

          第三種方法,對第二種方法做了一些改進,它基于這樣一個思想:在營銷活動中,用戶看似混沌的各種行為,實際上與最終目的達成(如轉化)的終極目標有相當確定的比例關系。盡管對各類營銷活動,以及各個網站而言,這些比例關系并無相同的值,但對于一個確定的活動或網站,這些比例卻相對穩定。例如,對于很多電子商務網站而言,除非是品類結構發生大的變動,否則它們的“購物車到實際購買之間的轉化概率”是比較穩定的,例如在40%的基準上左右浮動。那些不需要銷售商品的品牌推廣營銷,其實也適用這種關系,因為這些營銷幾乎都有明確的希望用戶采取的行動作為最終目的(例如申請試用,分享給朋友等),這些具體的行動與電子商務網站的購買行為其實并無本質的差別。現在,我們假設一個電子商務網站有如下的轉化規律:每100個新注冊會產生4個訂單;每100個IPV會產生(對應)18個訂單;每100次把商品放入收藏夾會產生20個訂單……,我們可以得到下面的一個表格:

          為了后面的計算關系,我們把每個Engagement指標都變成1為基準,于是我們得到了下面一個表格,值雖然不同,但是比例關系是完全一樣的(同比變化):

          有了這個對應關系,我們可以很容易的給轉化發生之前的所有重要事件定義Engagement的權重。如果我們以1個轉化為100分計算,那么我們得到下面的表格:

          有了權重,按照各個不同的行為的實際值,計算出各指標的Engagement Index完全輕而易舉。如下表所示:

          第三種方法相對于第二種方法看起來更為科學一些,Google Analytics的Page Value的設置也是類似于這種方法。但這種方法并不能說是現實的完全真實的反饋,它還是存在一定的問題。由于此方法基于所有的行為都對最終的轉化有直接的貢獻作用 的假設而設立,但轉化必然是一個過程,在轉化過程的不同階段用戶的不同行為之間其實有相互的關系(正面的促進或者負面的干擾),而這個方法并未把這些情況涵蓋在內。

        有意思的是,對于這個方法,你會發現——由于網站內部的轉化也是一步一步發生的,不同過程對最終轉化的價值并不一定一樣,因此似乎也完全適用于Attribution Modeling的方式,采用不同的modeling(如線性,還是遞減,或是中間高兩邊低)的方式,對用戶不同行為的賦權值也就不一樣,你完全也可以采用Attribution Modeling模型的思想根據實際情況去為不同的Engagement指標賦權,這樣可以更接近于你期望的業務實際。不過操作難度看起來相當不樂觀。;)

        盡管三種方法都并非100%對用戶的Engagement真實程度的再現(可是完全再現真實只是理想狀態),但對于我們期望的定量化的Engagement卻是很有幫助的。對于一次營銷campaign,利用這些的方法能夠告訴我們從過程的角度看,是否它沿著我們預期的路線在前進。下面這個真實的案例即采用了上面的方法。

        案例

        這是一個分為三個階段的較為長期的營銷活動。在不同階段中,采用了不同的著陸頁面。三個階段分別產生的Engagement如下圖所示:

          僅僅從數值上看,第二階段是非常不錯的。不過畢竟每個階段的目的和目標不一樣,而且推廣時長也不同,采用的營銷手段也許也不一樣,因此單純比較數據其實反而容易誤導我們。第二階段真的是最好的階段嗎?

        如果這個營銷活動每個階段都有確定的Engagement Index的目標(往往這個目標在營銷活動之前都會做設置,設置的方法真的是一個大學問,但其實總結起來也就是四個字——經驗積累),那么我們倒可以看看哪個階段更好些:

          第二階段看起來完成的Engagement Index很多,但是對這個階段的期待卻是最高的。而第一階段超出了目標不少。從這個意義上看,第一階段或是達成情況最好的。不過,我們有時候也會反思,是不是我們在設定目標值的時候不盡合理呢?

        目標設定具有的不確定性并不會給我們帶來嚴重的困擾,畢竟我們可以用其他更多的維度來衡量一個營銷活動是否“靠譜”。在這個案例中,細心的你會發現,其實每個階段的時間長度是不同的,而各個階段對于流量的投入,肯定也是不同的,那么我們可以通過比較同樣花費帶來的Engagement數量的情況,以及每個流量產生的Engagement數量的情況。

          上面這兩張圖顯示了在一個營銷活動在不同階段采用了不同Landing Page(LP,即著陸頁)和營銷方式時吸引用戶Engagement的效率。在第一個月,每產生一個Engagement需要消耗大約0.2美元,但第二階段Engagement的獲取成本則一下子提升了兩倍有余,第三階段看起來與第一階段差不多。而從營銷活動吸引訪問者的效率上看,第二階段明顯是最差的——在第一階段,每個visit還能產生2個多的Engagement Index,而第二個階段更換了著陸頁之后,卻一落千丈,最終在第三階段重新回到正軌。

        通過對Engagement Index進行簡單的計算和分析,我們即能對一次營銷活動有一個很快的整體把握。不過,對于第二階段的表現為什么不盡如人意,可能有多種可能性,一種是,流量質量在第二階段大幅度下降,另外一種則可能是第二階段更換了相當不理想的Landing Page。為了確知到底是什么原因所致,我們還需做進一步探究。(待續……)

        這一篇文章為大家介紹了Engagement衡量總體(宏觀)效果的方法。下一篇則會接著介紹Engagement的另外兩個重要作用:在確知流量質量的情況下,它如何衡量網站對影響用戶的程度;以及,在確知網站質量的情況下,如何通過Engagement衡量網站細分流量的質量。敬請期待。最后,歡迎大家留言,任何問題,建議和你的思考。:)法、案例與實戰!

         

        未經允許不得轉載:版權歸宋星及chinawebanalytics.cn所有互聯網分析在中國——從基礎到前沿 » 網絡營銷效果衡量的核心指標及我們用什么樣的邏輯思考(3)
        分享到: 更多 (0)

        評論 11

        • 昵稱 (必填)
        • 郵箱 (必填)
        • 網址
        1. #-49

          這樣算權重的方法還是有點意思

          小西8年前 (2013-06-19)回復
        2. #-48

          說的不錯,不過10條新聞不一定比5條吸引大哦,pv重要但不是唯一

          哈爾濱seo8年前 (2013-06-23)回復
        3. #-47

          宋老師的方法令人佩服,不過我一直發愁如何通過有效可行的邏輯來優化營銷方案(偏于傳統行業)以有效電話計量效果的網絡營銷如何衡量。我的描述有些死板(電子商務區別傳統服務,傳統服務通過實體面談簽合同,完成交易。)有什么好的思路嗎?

          昌宇7年前 (2013-08-25)回復
        4. #-46

          這文章真的來得不容易呀,辛苦啦!無論是效果營銷還是品牌營銷,對活動帶來的效益都應該要有一個預期的目標值,在最后進行總結分析時也可以對照一下看Engagement Index是否達到預期。營銷成本也是一定要納入分析報告中的。

          Victory7年前 (2013-09-03)回復
        5. #-45

          向前輩學習,雖然 我現在還看不懂你在說什么

          昆山SEO7年前 (2013-09-07)回復
        6. #-44

          感謝宋老師的分享,若用上面的方法進行計算和分析的話,解決了權重分配的大問題,從而可以找到用戶行為之間的相關性,讓所有的站長更加貼近大數據的運用,也讓我們的工作意義提升了一個臺階。

          陳晨7年前 (2013-09-25)回復
        7. #-43

          我看著都激動,終于給我找的一些網站分析方面的干活了,這的不容易呀。

          才子城7年前 (2013-09-29)回復
        8. #-42

          我喜歡您那個指標衡量的算法。

          但有兩點:

          網站的Bounce Rate真的高于80%,其實還有結論D, 就是網站landing page和廣告都有問題。 我覺得,有可能廣告和網站landing page的是關聯性,用戶導向landing page的清晰度,以及是否網站landing page針對廣告的copywriting的太多distraction影響用戶視線。

          還有我覺得,paid search ads的bounce更加重要,因為是high value traffic。而不是organic,站在商業ROI的立場上。

          Jing Huang4年前 (2017-02-10)回復
          • 都有問題是存在的。但是只能固定一個變量,看另外一個變量。所以找參考流量,即SEO等高質量流量,來確定是不是LP的問題。然后再反過來看,是不是其他流量的問題。作為參考流量,SEO的流量質量最好,但商業上未必是最重要的。

            Sidney Song4年前 (2017-02-10)回復
            • 關于important page的bounce,準確的說,paid ads導入的是其中之一的重要,當然還包括,high traffic volume page ( most visited page以及top entry page ) 其中top medium source以及pre-step page。對商業而言,website goal也有marco和micro,這個具體情況具體分析,中肯的說,必須先rank the goal。您覺得呢?

              anyway, 可以加您微信嗎?因為我有一些其他具體的問題想請教您,如果不是太唐突的話。先謝謝啦

              Jing Huang4年前 (2017-02-10)回復
        9. #-41

          地鐵上也能寫文章,老師真的好專注啊!佩服佩服!

          Melody2年前 (2019-04-14)回復
        色综合天天综合网天天